39 research outputs found

    Beyond motor neurons: expanding the clinical spectrum in Kennedy's disease

    Get PDF
    Kennedy's disease, or spinal and bulbar muscular atrophy (SBMA), is an X-linked neuromuscular condition clinically characterised by weakness, atrophy and fasciculations of the limb and bulbar muscles, as a result of lower motor neuron degeneration. The disease is caused by an abnormally expanded triplet repeat expansions in the ubiquitously expressed androgen receptor gene, through mechanisms which are not entirely elucidated. Over the years studies from both humans and animal models have highlighted the involvement of cell populations other than motor neurons in SBMA, widening the disease phenotype. The most compelling aspect of these findings is their potential for therapeutic impact: muscle, for example, which is primarily affected in the disease, has been recently shown to represent a valid alternative target for therapy to motor neurons. In this review, we discuss the emerging study of the extra-motor neuron involvement in SBMA, which, besides increasingly pointing towards a multidisciplinary approach for affected patients, deepens our understanding of the pathogenic mechanisms and holds potential for providing new therapeutic targets for this disease

    Development of a protein marker panel for characterization of human induced pluripotent stem cells (hiPSCs) using global quantitative proteome analysis

    Get PDF
    AbstractThe emergence of new methods for reprogramming of adult somatic cells into induced pluripotent stem cells (iPSC) led to the development of new approaches in drug discovery and regenerative medicine. Investigation of the molecular mechanisms underlying the self-renewal, expansion and differentiation of human iPSC (hiPSC) should lead to improvements in the manufacture of safe and reliable cell therapy products. The goal of our study was qualitative and quantitative proteomic characterizations of hiPSC by means of electrospray ionization (ESI)-MSe and MALDI-TOF/TOF mass spectrometry (MS). Proteomes of hiPSCs of different somatic origins: fibroblasts and peripheral blood CD34+ cells, reprogrammed by the same technique, were compared with the original somatic cells and hESC. Quantitative proteomic comparison revealed approximately 220 proteins commonly up-regulated in all three pluripotent stem cell lines compared to the primary cells. Expression of 21 proteins previously reported as pluripotency markers was up-regulated in both hiPSCs (8 were confirmed by Western blot). A number of novel candidate marker proteins with the highest fold-change difference between hiPSCs/hESC and somatic cells discovered by MS were confirmed by Western blot. A panel of 22 candidate marker proteins of hiPSC was developed and expression of these proteins was confirmed in 8 additional hiPSC lines

    REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis

    Get PDF
    SummaryRegulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its corepressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli

    Clinical and Molecular Aspects of Senataxin Mutations in Amyotrophic Lateral Sclerosis 4

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154673/1/ana25681_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154673/2/ana25681.pd

    Early onset and novel features in a spinal and bulbar muscular atrophy patient with a 68 CAG repeat

    Get PDF
    AbstractSpinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by a trinucleotide (CAG) repeat expansion in the androgen receptor gene. Patients with SBMA have weakness, atrophy, and fasciculations in the bulbar and extremity muscles. Individuals with CAG repeat lengths greater than 62 have not previously been reported. We evaluated a 29year old SBMA patient with 68 CAGs who had unusually early onset and findings not seen in others with the disease. Analysis of the androgen receptor gene confirmed the repeat length of 68 CAGs in both peripheral blood and fibroblasts. Evaluation of muscle and sensory function showed deficits typical of SBMA, and in addition the patient had manifestations of autonomic dysfunction and abnormal sexual development. These findings extend the known phenotype associated with SBMA and shed new insight into the effects of the mutated androgen receptor

    A randomized controlled trial of exercise in spinal and bulbar muscular atrophy.

    Get PDF
    OBJECTIVE: To determine the safety and efficacy of a home-based functional exercise program in spinal and bulbar muscular atrophy (SBMA). METHODS: Subjects were randomly assigned to participate in 12 weeks of either functional exercises (intervention) or a stretching program (control) at the National Institutes of Health in Bethesda, MD. A total of 54 subjects enrolled, and 50 completed the study with 24 in the functional exercise group and 26 in the stretching control group. The primary outcome measure was the Adult Myopathy Assessment Tool (AMAT) total score, and secondary measures included total activity by accelerometry, muscle strength, balance, timed up and go, sit-to-stand test, health-related quality of life, creatine kinase, and insulin-like growth factor-1. RESULTS: Functional exercise was well tolerated but did not lead to significant group differences in the primary outcome measure or any of the secondary measures. The functional exercise did not produce significantly more adverse events than stretching, and was not perceived to be difficult. To determine whether a subset of the subjects may have benefited, we divided them into high and low functioning based on baseline AMAT scores and performed a post hoc subgroup analysis. Low-functioning individuals receiving the intervention increased AMAT functional subscale scores compared to the control group. INTERPRETATION: Although these trial results indicate that functional exercise had no significant effect on total AMAT scores or on mobility, strength, balance, and quality of life, post hoc findings indicate that low-functioning men with SBMA may respond better to functional exercises, and this warrants further investigation with appropriate exercise intensity

    Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype 2 by modulating AR transcriptional activity:AR isoform 2 counteracts polyglutamine AR toxicity

    Get PDF
    Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset neuromuscular condition caused by an abnormal polyglutamine (polyQ) tract expansion in androgen receptor (AR) protein. SBMA is a disease with high unmet clinical need. Recent studies have shown that mutant AR-altered transcriptional activity is key to disease pathogenesis. Restoring the transcriptional dysregulation without affecting other AR critical functions holds great promise for the treatment of SBMA and other AR-related conditions; however, how this targeted approach can be achieved and translated into a clinical application remains to be understood. Here, we characterized the role of AR isoform 2, a naturally occurring variant encoding a truncated AR lacking the polyQ-harboring domain, as a regulatory switch of AR genomic functions in androgen-responsive tissues. Delivery of this isoform using a recombinant adeno-associated virus vector type 9 resulted in amelioration of the disease phenotype in SBMA mice by restoring polyQ AR-dysregulated transcriptional activity

    Juvenile Amyotrophic Lateral Sclerosis: A Review

    No full text
    Juvenile amyotrophic lateral sclerosis (JALS) is a rare group of motor neuron disorders with gene association in 40% of cases. JALS is defined as onset before age 25. We conducted a literature review of JALS and gene mutations associated with JALS. Results of the literature review show that the most common gene mutations associated with JALS are FUS, SETX, and ALS2. In familial cases, the gene mutations are mostly inherited in an autosomal recessive pattern and mutations in SETX are inherited in an autosomal dominant fashion. Disease prognosis varies from rapidly progressive to an indolent course. Distinct clinical features may emerge with specific gene mutations in addition to the clinical finding of combined upper and lower motor neuron degeneration. In conclusion, patients presenting with combined upper and lower motor neuron disorders before age 25 should be carefully examined for genetic mutations. Hereditary patterns and coexisting features may be useful in determining prognosis

    Toe-extension myotonia in myotonic dystrophy type 1

    No full text
    corecore